DIFFERENTIAL TOPOLOGY

100 Points

Notes.

(a) Justify all your steps. You may use any result proved in class unless you have been asked to prove the same.

(b) \mathbb{Z} = integers, \mathbb{Q} = rational numbers, \mathbb{R} = real numbers, \mathbb{C} = complex numbers,

1. [7 points] Verify that the intersection C of the two surfaces in \mathbb{R}^3 given by the locus of $x^2 - y = 0$ and xy - z = 0 is a submanifold of dimension 1 and give a parametrization of the tangent line to C at p = (1, 1, 1).

- 2. [7 points] Prove that the dimension of a compact submanifold of \mathbb{R}^N is strictly less than N.
- 3. [22 points]
 - (i) Let x_1, \ldots, x_N be the standard coordinate functions on \mathbb{R}^N and let M be a k-dimensional submanifold of \mathbb{R}^N . Prove that for every $p \in M$, there exists a neighbourhood U of p and there exist kcoordinates x_{i_1}, \ldots, x_{i_k} such that the corresponding projection $f: U \to \mathbb{R}^k$ gives a diffeomorphism of U to an open subset V of \mathbb{R}^k . (Hint: First solve the corresponding linear problem.)
 - (ii) Deduce that U in (i) is the graph of a smooth function $g = (g_{k+1}, \ldots, g_N) \colon V \to \mathbb{R}^{N-k}$.
- (iii) Prove that the locus of $y^3 x^5$ in \mathbb{R}^2 is a not a submanifold around the origin.
- 4. [22 points] Let $f: X \to Y$ be a smooth map of manifolds.
 - (i) If $\dim(X) = \dim(Y)$ and X is compact, prove that for any regular value $y \in Y$, the set $f^{-1}(y)$ is finite.
 - (ii) Give an example where f is an immersion and $y \in Y$ is regular for f, but $f^{-1}(y)$ is infinite.
- (iii) If f is surjective, prove that $\dim(X) \ge \dim(Y)$.

5. [15 points] Define what it means for $f: X \to Y$ to be transversal to a submanifold $Z \subset Y$. Prove that in this case, $f^{-1}Z$ is a submanifold in X of codimension same as that of Z in Y.

6. [12 points] Recall that a manifold X is called *contractible* if its identity map is homotopic to some constant map $X \to \{x\}$ where x is a point of X. Prove that X is contractible if and only if for any arbitrary manifold Y, all the maps from Y to X are homotopic to each other.

- 7. [15 points]
 - (i) Give an example of an uncountable dense subset of [0, 1] having measure 0.
 - (ii) Prove that if $X \subset \mathbb{R}^k$ and $Y \subset \mathbb{R}^l$ have measure 0, then so does $X \times Y \subset \mathbb{R}^{k+l}$.